BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 46, 797—804 (1973)

The Molecular Vibrations and the Rotational Isomerism of (Chloromethyl)methylsilane

Michiro Hayashi, Keiichi Ohno, and Hiromu Murata

Department of Chemistry, Faculty of Science, Hiroshima University, Higashi-sendamachi, Hiroshima

(Received September 6, 1972)

The infrared spectra of (chloromethyl)methylsilane and its deuterated species have been measured in the gaseous, liquid, and crystalline states. The normal vibration calculation has been carried out using a modified Urey-Bradley force field. It has been concluded that, in the gaseous and liquid states, there exist both the trans and gauche isomers, while only the former persists in the crystalline state. For ClCH₂SiD₂CH₃, a different spectral pattern has sometimes been recorded in the crystalline state before the sample has been annealed enough. It has been concluded that the persisting isomer is in the gauche form in this metastable crystalline state. The trans and gauche isomers have been found, from the temperature dependence of the relative intensities of the spectra, to have nearly the same energy in the liquid state. From the solvent effects of the spectra, the trans isomer has been found to be more polar than the gauche isomer. Therefore, if the C-Cl bond moment is assumed to have the direction of C+-Cl-, the group moment of the C₂SiH₂ part of the molecule must be in the direction of

C H + Si - on the bisector of the C-Si-C angle. The vibrational assignments have been worked out taking C H

into account the results of the normal vibration calculations and the reported assignments for chloromethylsilane, dimethylsilane, and ethylmethylsilane.

Recently, we have worked out the vibrational assignments and the rotational isomerism for alkylsilane. The vibrational assignments and the normal vibration calculations for halogenomethylsilane,¹⁾ methylsilane,²⁾ dimethylsilane,²⁾ ethylsilane,²⁾ and ethylmethylsilane³⁾ have already been reported. In this paper, the vibrational assignments of (chloromethyl)methylsilane will be dealt with in relation to the rotational isomerism around the C–Si bond as an axis.

The normal vibrations of this molecule have been calculated using modified Urey-Bradley force constants transferred from those of chloromethylsilane and dimethylsilane.

The direction of the group moment of the C₂SiH₂ part of the molecule will be discussed using the results of the solvent effects of the spectra.

Experimental

The samples of (chloromethyl)methylsilane and its deuterated species were prepared by the reduction of a com-

mercial product of $ClCH_2SiCl_2CH_3$ (Pierce Chem. Co. U.S.A.) with $LiAlH_4$, $LiAlD_4$, or an equimolar mixture of $LiAlH_4$ and $LiAlD_4$ in n-butyl ether.⁴⁾ The purities of the samples of $ClCH_2SiH_2CH_3$ and $ClCH_2SiD_2CH_3$ were checked by means of the infrared spectra and gas chromatography.

The infrared spectra in the region from 200 to 4000 cm⁻¹ were recorded on a Perkin-Elmer instrument (model 621). For the measurements in the crystalline state, the vapors of the samples were directly condensed on a CsI plate in a cell cooled with liquid nitrogen in a vacuum and were then annealed several times in order to keep the samples from being in a supercooled state. The spectra in the gaseous state were measured with one-meter and 10 cm gas cells with CsI windows.

In order to measure the relative intensity changes in the infrared spectra, the solution spectra were also measured using a sealed KRS-5 cell (0.2 mm thick), with carbon disulfide and acetonitrile as the solvents.

Rotational Isomerism

In this substance, two rotational isomers are expected around the C-Si bond, as is shown in Fig. 1.

The observed infrared spectra of ClCH₂SiH₂CH₃ and ClCH₂SiD₂CH₃ in the region from 300 to 1000 cm⁻¹

¹⁾ K. Ohno and H. Murata, This Bulletin, 45, 3333 (1972).

²⁾ K. Ohno, M. Hayashi, and H. Murata, J. Soc. Hiroshima Univ., Ser A., 36, XXX (1972).

³⁾ M. Hayashi, K. Ohno, and H. Murata, This Bulletin, 45, 298 (1972); 46, 684 (1973).

⁴⁾ M. Kumada, M. Ishikawa, and S. Maeda, J. Organometal. Chem., 2, 478 (1964).

Table 1. Infrared spectra of ClCH.SiH, CH.

			Table 1.	Infrared spectra of ClCH ₂ SiH ₂ CH ₃			
Ga	Gas		Liquid		Crystal		A •
cm ⁻¹	Int.	cm^{-1}	Int.	cm ⁻¹		Int.	Assignment
2982 2976 2970	ms	2966	m	2975		m	CH2 antisym. str. T,G, CH3 asym. str. (A', A") T,G
2948 2942 2936	ms	2942	m	2950		m	CH ₂ sym. str. T,G
·		2913 b 2905 b		2912	b	vw	CH ₃ sym. str. T,G
2182 sł 2174	vs vs	2156	vs	2155		s	SiH ₂ antisym. str. T,G
$\left. \begin{array}{c} 2154 \\ 2148 \\ 2142 \end{array} \right\}$	vs			2130		s	SiH ₂ sym. str. T,G
1440 1431 1422	m	1416 1	b mw	1421 1416	sh	w m	CH ₃ asym. def. (A',A") T,G
1409 1402 1394	ms	1394	m	1411 1400 1388	sh	w vw m	CH ₂ sci. T,G
				1350 1309		vw vw	
1267) 1257 } 1184)	S	1256	s	1249		s	CH ₃ sym. def. T,G
1179 1173	m	1179	m	1170		ms	CH ₂ wag. T,G
1142 b 1113)	w						
1107 1101	m	1109	m	1111		m	CH ₂ twist. T,G
952 948 941	VS	940	VS	987 981 961 951	ĺ	mw vs	SiH ₂ sci. T,G
·				920	sh	s	
$egin{array}{c} 912 \\ 905 \\ 899 \\ \end{array} \}$	vs	895	VS	908 887	b b	VS VS	SiH ₂ wag. T,G
875 867	s s	867	s	867 828	sh	vs m	CH ₃ rock. (A") T,G
816 809 }	s	809	s	814		S	CH ₂ rock. T
772 759 748	s s	761	s	766		s	CH ₃ rock. (A') T,G, CH ₂ rock. G
740 sh	ms	745	vvw	745		s	C–Si str. T
728	ms	736	ms				C-Si str. G
$\left. egin{array}{c} 706 \\ 701 \\ 694 \end{array} ight\}$	ms	699	S	699		vs	C-Cl str. T
685	m	685	mw				C-Cl str. G
620 612	ms ms	617 s		— 607		e	SiH ₂ twist. G C–Si str. T
585)	ms		m	007		S	
579 } 574 }	ms	579	m				C–Si str. G
$\left. egin{array}{c} 490 \\ 485 \\ 478 \end{array} ight\}$	s	487	s	492		s	SiH ₂ rock. T, G

Int. =intensity; s, m, w=strong, medium, weak; v=very; sh=shoulder; b=broad; T=trans form; G=gauche form.

Table 2. Infrared spectra of ClCH₀SiD₀CH₀

			Table 2.			ClCH ₂ SiD ₂ C		
Ga	S	Lic	quid	Cryst	al A	Crysta	al B	Assignment
cm ⁻¹	Int.	cm ⁻¹	Int.	cm ⁻¹	Int.	cm ⁻¹	Int.	
2975	s			2977	w		1	CH ₂ antisym. str.,
2962	S	2967	mw	2967	w	2966	mw }	CH_3 asym. str. (A',A'')
2948		0005		0001		0044		CII.
$2944 \ 2937$	S	2935	mw	2931	w	2944	mw	CH ₂ sym. str.
2905	mw	2908	w	2909	vw	2904	w	CH ₃ sym. str.
1591 \sl		2300	vv	2303	V VV	2301	**	City sym. str.
1584	vs					1581	s)	
1578 J				1576	vs		}	SiD_{2} antisym. str.
1571		1573	S	1570 ∫	V.	1567	{	
1566 1560	VS					1567 } 1559 }	s	SiD ₂ sym. str.
1552	vs	1553	s	1555	S			
						1427	ms)	
1422				1422 }	w	1420	ms }	CH ₃ asym. def. (A'A")
1415	ms	1416	m	1416	**	1120	1115	orig asymication (irri)
1409 {				1409	mw	_	J	
1401	ms	1396	m	1398	m	1396	ms	CH ₂ sci.
•				1388	w			-
1346	vw			1333	vw			
1335 }				1274	vw			
1267)				1250	V VV			
1257	S	1253	ms	1246	ms	1250	S	CH ₃ sym. def.
1182 j				,				
1177 }	w	1175	w	1178	w	1168	$\mathbf{m}\mathbf{w}$	CH_2 wag.
1172								
$1110 \\ 1105$	***	1103	***	1111	747	1107	747	CH ₂ twist.
1099	w	1103	W	1111	w	1107	w	CII ₂ twist.
1000 ,				887	vw	884	vw	
				879	vw	876	vw	
				856	vw			
				850	vw			
827				826 }	vs			
824 }	VS	815	vs	818 {		819 b	VS	CH ₃ rock. (A')
817				813 }	VS	814	vs	CH ₃ rock. (A")
797 j	770	783	vs	788 Ĵ	170	784	347	CH ₂ rock.
786 }	vs	703	VS	780 }	vs		w .	
749 l		705		700		747	s }	C-Si str.
743 }	S	735	ms	732	ms	—	J	
728 l	s	724	ms			722 b	s	SiD ₂ sci.
734 728 722								2
		689	m	699 }	ms			C-Cl str.
604 \				695 ∫ 682 }				SiD ₂ sci.
$\{694 \\ 687 \}$	vs	681	s	679	S			DID ₂ SCI.
680 S	7.5	301		3,3)		675	s	C-Cl str.
651)		668	sh ms					
646 }	mw	644	w			648	w }	C-Si str.
640		637	w	637	m		J	
571 565	s	567	ms			570	s	SiD ₂ wag.
560	a	307	1112			370	is .	ving.
544								
538 }	S	537	ms	535	S			SiD ₂ wag.
533								
477	•	A75		470	*****			SiD turist
472 } 466 }	w	475	mw	479	mw			SiD ₂ twist.
406)								
400 }	S	401	S	401	S		J	SiD ₂ rock.
395		389	sh w			392	\mathbf{m}	
				240	m			Skeletal bend.

Crystal A: The metastable crystalline state, where the gauche isomer persists alone. Crystal B: The stable crystalline state, where the trans isomer persists alone.

are shown in Figs. 2 and 3 respectively, where (a) and (b) indicate the spectra in the liquid and in the crystalline states respectively,

Table 3. Infrared spectra of the mixture of $ClCH_2$ — $SiHDCH_3$, $ClCH_2SiH_2CH_3(-d)$, and $ClCH_2SiD_2CH_3(-d_0)^{a}$)

Liqu	uid	Crys	tal	Assignment ^{b)}
cm ⁻¹	Int.	cm ⁻¹	Int.	7 Losigninent
803 sh	s	805	vs	CH ₂ rock. T
783	S	785	VS	$-d_2$
761	ms	766	m	$-d_0$
		750	m	C-Si str. T
747	ms	746	m	$-d_0, -d_2$
724	ms	727	m	$-d_2$
710	ms	714	s	Si-H def. T
700	ms	700	m	$-d_0$
682	S	687	m	C-Cl str. T
668 sh	m	675	m	$-d_2$
644	w	646	w	$-d_2$
637 sh	w			$-d_2$
$617 \mathrm{sh}$	w			$-d_0$
607	m	607	m	$-d_0$
595 sh	w	·		C-Si str. G
579 sh	w	_		$-d_0$
567	m	568	m	$-d_2$
539	m			$-d_2$
502 sh	mw	_		Si-D def. G
494	m	498	m	Si-D def. T
487	m	489	m	$-d_0$
475 sh	mw			$-d_2$
433	m			SiHD rock. G
425	m	423	m	SiHD rock. T
401	m			$-d_2$
389 sh	w	391	m	$-d_2$

- a) The region from 810 to 4000 cm⁻¹ is omitted.
- b) Assignments for the d_0 and d_2 species are omitted.

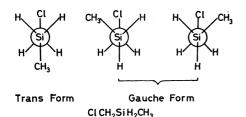


Fig. 1. Molecular forms of (chloromethyl)methylsilane.

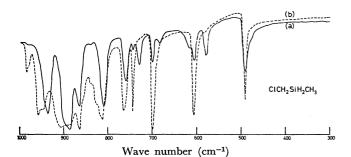


Fig. 2. Infrared spectra of ClCH₂SiH₂CH₃.

- (a): in the liquid state,
- (b): in the crystalline state.

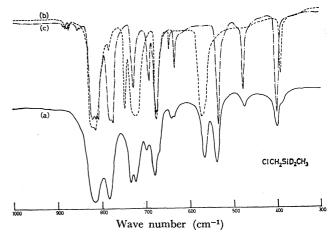


Fig. 3. Infrared spectra of ClCH₂SiD₂CH₃.
(a): in the liquid state,

(b): in the stable crystalline state,(c): in the metastable crystalline state.

A comparison of the observed spectra in the liquid state with those in the crystalline state reveals the existence of rotational isomers in this substance, since some of the infrared bands vanish in the crystalline

Especially, it is to be noted that, for ClCH₂SiD₂CH₃, a different spectral pattern is sometimes obtained in the crystalline state before annealing the sample enough, as is shown in (c) of Fig. 3; furthermore, the superposition of these two kinds of spectral patterns, (b) and (c), coincides with the spectral pattern in the liquid state.

This is understandable if the persisting isomer has different molecular forms for ClCH₂SiD₂CH₃ in the metastable and stable crystalline states.

In the cases of ethylmethylsilane and its deuterated species, the existence of the rotational isomers has been proved from the lower-frequency mode of two Si–C stretchings and the SiH₂ rocking, SiD₂ rocking, and SiD₂ wagging modes appearing in the region from 300 to 650 cm^{-1,3)} The spectra assigned to these modes have been observed for ethylmethylsilane as pairs which consist of two bands attributable to the *trans* and *gauche* isomers respectively.

These modes are also expected for (chloromethyl)-methylsilane in the same region as those for ethylmethylsilane; that is, for ClCH₂SiH₂CH₃, the lower-frequency mode of the two C–Si stretchings and the SiH₂ rocking mode are expected around 620 and 490 cm⁻¹ respectively, and for ClCH₂SiD₂CH₃, the C–Si stretching, the SiD₂ wagging, and the SiD₂ rocking modes are expected around 640, 560, and 400 cm⁻¹ respectively. In this region, for ClCH₂SiH₂CH₃ three bands are seen in the liquid state; one of them accompanies a shoulder on the higher-frequency side, while two bands persist in the crystalline state.

For ClCH₂SiD₂CH₃ five bands are seen in the liquid state; two of them accompany a shoulder on the lower-frequency side, while there are four and three bands persisting in the metastable and stable crystalline states respectively.

Although some of these bands can be regarded as pairs, only single bands can be found for the other

modes. However, these single bands can be regarded as unresolved pairs of two bands, since these bands are reduced in their relative intensities in the crystalline state; this fact can be understood if one of two unresolved bands vanishes in the crystalline state. The possibility of the unresolved bands in a pair is also supported by the fact that even the resolved bands in a pair actually have much smaller spacings than those for ethylmethylsilane.³⁾

March, 1973]

Because of the smallness of the spacing of the bands in the pair, the existence of the rotational isomers cannot be concluded from the SiH₂ rocking mode for ClCH₂SiH₂CH₃. However, for ClCH₂SiD₂CH₃, definite evidence is obtained from the SiD₂ wagging and the SiD₂ rocking modes. The pair at 567 and 537 cm⁻¹ assigned to the SiD₂ wagging mode, and that at 401 and 389 cm⁻¹ assigned to the SiD₂ rocking mode, are seen in the liquid state, where the bands at 537 and 401 cm⁻¹ disappear in the stable crystalline state. This is the same as in the case of ethylmethylsilane.

Therefore, if the bands in the pair appear in the same order as in the case of ethylmethylsilane, the bands disappearing in the stable crystalline state are attributable to the *gauche* isomer and the bands persisting in the stable crystalline state are attributable to the *trans* isomer.

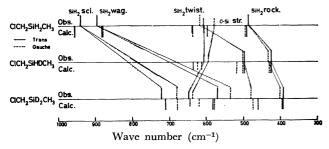


Fig. 4. Observed and calculated frequencies of the SiH₂, SiD₂, and SiHD deformation modes and the lower frequency C-Si stretching mode.

As is shown in Fig. 4, this conclusion is also confirmed by the normal vibration calculation, as will be described later.

The pair at 608 and 579 cm⁻¹ for ClCH₂SiH₂CH₃ and that at 644 and 637 cm⁻¹ for ClCH₂SiD₂CH₃ are seen in the liquid state, where one of two bands in each pair (579 and 637 cm⁻¹) disappears in the crystalline state. These are assigned to the lower-frequency mode of C–Si stretching from the results of the calculations.

Usually, the spectra of an asymmetrically deuterated species such as ClCH₂SiHDCH₃ give difinite experimental evidence on the molecular forms of the rotational isomers. For ClCH₂SiHDCH₃ and CH₃CH₂-SiHDCH₃, since the two gauche forms come to be not equivalent, the spectra of the gauche isomer are expected to be split into doublets, while the spectra of the trans isomer remain singlets.

This is actually the case with ethylmethylsilane.³⁾ For the present case of ClCH₂SiHDCH₃, however, this is not actually the case.

As is shown in Fig. 5 although the doublet at 433

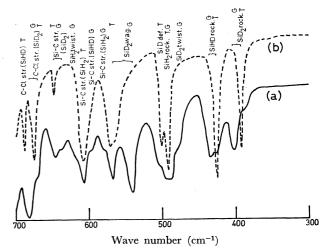


Fig. 5. Infrared spectra of the mixture of ClCH₂SiHDCH₃, ClCH₂SiH₂CH₃, and ClCH₂SiD₂CH₃.

- (a): in the liquid state,
- (b): in the crystalline state.

and 425 cm⁻¹ assigned to the SiHD rocking mode is seen in the liquid state, one of the components, that at 433 cm⁻¹, disappears in the crystalline state. This component can be regarded as two unsplit bands due to two different pairs of *gauche* forms.

The existence of the rotational isomers in the gaseous state can also be proved from a comparison of the spectra in the gaseous and liquid states.

In the case of ClCH₂SiD₂CH₃, in the crystalline state it is concluded from the above discussions of the molecular forms of the isomers that the *gauche* isomer persists alone in the metastable state, while the *trans* isomer persists alone in the stable state.

As no appreciable changes in the relative absorption intensities between the spectra at low temperatures (ca. -100°C) and those at room temperature (ca. 23°C) were observed, the energy difference between the isomers can be disregarded in the liquid state. In the gaseous state, the larger overlapping of the key bands prevents the measurement of the relative intensities of the bands.

The Solvent Effects of the Spectra

The solvent effects of the spectra were measured using the pair of Si-C stretching bands at 608 and 579 cm⁻¹ for ClCH₂SiH₂CH₃ and the pair of SiD₂ wagging bands at 567 and 537 cm⁻¹ for ClCH₂SiD₂CH₃, where the higher-frequency bands of each pair are due to the *trans* isomer and the lower bands are due to the *gauche* isomer.

The bands for the *trans* isomer increase in their relative intensities when a mixture is made with a polar solvent such as acetonitrile, while the bands for the *gauche* isomer increase in their relative intensities in a mixture with a non-polar solvent such as carbon disulfide, as is shown in Fig. 6. Therefore, it can be concluded that the *trans* isomer is more polar than the *gauche* isomer.

From these results, if the C-Cl bond moment is assumed to have the direction of C+-Cl-, the group

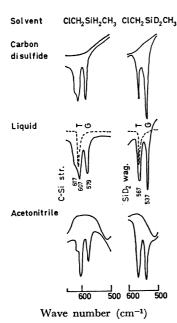


Fig. 6. Solvent effects of the infrared spectra for (chloromethyl)-methylsilane.

moment of the C_2SiH_2 group should be in the direction of $+ C_2SiH_2$ on the bisector of the C–Si–C angle.

The Normal Vibration Calculation and the Vibrational Assignments

In order to confirm the molecular forms of the rotational isomers and the assignments of the observed spectra, the normal vibration calculation for (chloromethyl)methylsilane was carried out using a modified Urey-Bradley force field.

The force constants used were transferred from those for chloromethylsilane¹⁾ and dimethylsilane²⁾ except for the two force constants of H(Cl-C-Si) and F(Cl-C-Si), which were adjusted in order to predict the observed Cl-C-Si bending vibration, which had not been observed for chloromethylsilane.

The modified Urey-Bradley force field used in the calculation was the same type as in the cases of chloromethylsilane and dimethylsilane, where the internal rotation force constants for the CH₃-Si and CH₂-Si groups were taken so as to predict the observed barrier height of 1.65 kcal/mol for dimethylsilane⁵⁾ by microwave spectroscopy.

The structural parameters were transferred from those of chloromethylsilane⁶⁾ and dimethylsilane⁵⁾ determined by microwave studies. However, the valency angles were assumed to be tetrahedral without regard to the reported values.

The force constants used in the calculation are listed in Table 4. The observed and calculated frequencies of (chloromethyl)methylsilane and its deuterated species are given in Tables 5—7, together with their predominant symmetry coordinates in the potential energy

Table 4. Force constants for (chloromethyl)methylsilane^a)

	MEIHY	LSILANE	
K(C-H), CH ₂	4.390	$\kappa(\mathrm{CH_2})$	0.027
$K(C-H)$, CH_3	4.403	$\kappa(\mathrm{CH_3})$	0.014
K(Si-H)	2.462	$\kappa(\mathrm{SiH_2})$	0.104
K(C-Cl)	1.697	Y(C-Si)	0.051
K(C-Si)	1.991	p(C-H)	-0.084
H(Si-C-Cl)	0.030	$F(\mathbf{Si} \cdot \mathbf{C} \cdot \mathbf{Cl})$	0.280
$H(Si-C-H)$, CH_2	0.104	$F(Si \cdot C \cdot H), CH_2$	0.271
H(Cl-C-H)	0.147	$F(\mathbf{Cl} \cdot \mathbf{C} \cdot \mathbf{H})$	0.558
H(H-C-H)	0.349	$F(\mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H})$	0.200
H(C-Si-C)	0.133	$F(\mathbf{C} \cdot \mathbf{Si} \cdot \mathbf{C})$	0.040
$H(C-Si-H)$, CH_3	0.092	$F(C \cdot Si \cdot H), CH_3$	0.149
$H(C-Si-H)$, CH_2	0.113	$F(\mathbf{C} \cdot \mathbf{Si} \cdot \mathbf{H}), \mathbf{CH_2}$	0.149
H(H-Si-H)	0.180	$F(\mathbf{H} \cdot \mathbf{Si} \cdot \mathbf{H})$	0.041
$H(Si-C-H)$, CH_3	0.102	$F(Si \cdot C \cdot H), CH_3$	0.271
$t(Si-C-Cl, SiH_2)^{b}$	0.017	t(C-Si-C, CH) ^{b)}	0.030
$t(CH_2, SiH_2)^{b)}$	0.082	$t(CH_3, SiH_2)^{b)}$	0.057

a) Force constants are transferred from those of dimethylsilane and chloromethylsilane except H (Si-C-Cl) and F(Si-C·Cl) which are adjusted so as to reproduce the observed frequency of the Si-C-Cl bending mode. The units of the force constants are in mdyn/Å for the streching, K; the bending, H; the repulsion, F; and the bond interaction, p, and in mdyn-Å for the internal rotation, Y; the *trans* coupling, t; and the intramolecular tension, k.

b) The gauche coupling constants are assumed to be g = -0.5t.

Table 5. Observed and calculated frequencies of ClCH₂SiH₂CH₃

	No.	Tran	s form	Gauch	e form	P. E. D. ^a)
	110.	Obsd	Calcd	Obsd	Calcd	1. E. D.
A'	1	2966	2964	2966	2964	CH ₃ asym. str.
	2	2942	2949	2942	2949	CH ₂ sym. str.
	3	2913	2901	2913	2901	CH ₃ sym. str.
	4	2156	2147	2156	2147	SiH ₂ sym. str.
	5	1416	1413	1416	1413	CH_3 asym. def.
	6	1394	1420	1394	1421	CH ₂ sci.
	7	1256	1254	1256	1254	CH ₃ sym. def.
	8	1179	1168	1179	1168	CH ₂ wag.
	9	940	955	940	956	SiH ₂ sci.
	10	895	882	895	879	SiH ₂ wag., CH ₃ rock.
	11	761	777	761	770	CH ₃ rock., SiH ₂ wag.
	12	745	730	736	729	C-Si str., C-Cl str.
	13	699	688	685	695	C-Cl str., C-Si str.
	14	608	639	579	606	C–Si str., C–Cl str.
	15		212		251	Skeletal bend.
	16		158	_	148	Skeletal bend.
$A^{\prime\prime}$	17	2966	2994	2966	2993	CH ₂ antisym. str.
	18	2966	2964	2966	2964	CH_3 asym. str.
	19	2156	2148	2156	2148	SiH ₂ antisym. str.
	20	1416	1413	1416	1413	CH_3 asym. def.
	21	1109	1109	1109	1112	CH ₂ twist.
	22	867	846	867	842	CH ₃ rock., SiH ₂
						twist.
	23	809	824	761	776	CH_2 rock., CH_3
						rock., SiH ₂ twist.
	24		597	618	637	SiH, twist., CH2
						rock.
	25	487	492	487	496	SiH ₂ rock.
	26		169	_	178	CH ₃ -Si torsion
	27		66		67	CH ₂ -Si torsion

a) Only the predominant symmetry coordinates are shown.

⁵⁾ L. Pierce, J. Chem. Phys., 34, 498 (1960).

⁶⁾ R.H. Schwendeman and G.D. Jacobs, ibid., 36, 1251 (1962).

Table 6. Observed and calculated frequencies of ClCH₂SiD₂CH₃

								~		•		U	
	No.		s form	Gauci	he form	P. E. D. ^a)		No.		form	Gauch	e form	P. E. D. ^a)
	110.		Calcd	Obsd	Calcd	1. E. D.		140.		Calcd	Obsd	Calcd	1. E. D.
A'	1	2966	2964	2967	2964	CH ₃ asym. str.		15		210	240	248	Skeletal bend.
	2	2944	2949	2931	2949	CH ₂ sym. str.		16		154		145	Skeletal bend.
	3	2904	2901	2909	2901	CH ₃ sym. str.							
	4	1563	1536	1555	1536	SiD ₂ sym. str.	$A^{\prime\prime}$	17	2966	2994	2977	2993	CH ₂ antisym. str.
	5	1420	1413	1409	1413	CH ₃ asym. def.		18	2966	2964	2967	2964	CH ₃ asym. str.
	6	1396	1420	1398	1421	CH ₂ sci.		19	1581	1552	1573	1552	SiD ₂ antisym. str.
	7	1250	1254	1248	1254	CH ₃ sym. def.		20	1427	1413	1419	1413	CH ₃ asym. def.
	8	1168	1167	1178	1166	CH ₂ wag.		21	1107	1107	1111	1110	CH ₂ twist.
	9	819	822	822	823	CH ₃ rock.		22	814	817	815	816	CH ₃ rock.
	10	747	749	732	731	C-Si str.		23	784	780	784	759	CH ₂ rock.
	11	722	711	680	678	SiD ₂ sci.		24		460	479	474	SiD ₂ twist.
	12	675	672	697	712	C-Cl str., C-Si str.		25	392	393	401	395	SiD ₂ rock.
	13	648	645	637	619	C-Si str.		26		168		175	CH ₈ -Si torsion
	14	570	582	535	578	SiD ₂ wag.		27		65		65	CH ₂ -Si torsion

a) Only the predominant symmetry coordinates are shown.

Table 7. Observed and calculated frequencies of ClCH₂SiHDCH₃

NT-	Tran.	s form	Gauche	form(G) ^{a)}	Gauche fo	orm(G') ^{b)}	P. E. D. ^{e)}	
No.	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd		
A 1		2994		2993		2993	CH ₂ antisym. str.	
2		2964		2964		2964	CH ₃ asym. str.	
3		2964		2964		2964	CH ₃ asym. str.	
4		2949		2949		2949	CH ₂ sym. str.	
5		2901		2901		2901	CH ₃ sym. str.	
6		2148		2147		2147	Si-H str.	
7		1544		1544		1544	Si–D str.	
8		1420		1421		1421	CH_2 sci.	
9		1413		1413		1413	CH ₃ asym. def.	
10		1413		1413		1413	CH ₃ asym. def.	
11		1254		1254		1254	CH ₃ sym. def.	
12		1168		1166		1168	CH ₂ wag.	
13		1108		1112		1110	CH ₂ twist.	
14		869		876		855	SiHD sci.	
15		858		857		858	CH ₃ rock., SiHD def.	
16		812		814		812	CH ₃ rock.	
17	805	794		715		723	CH ₂ rock.	
18	750	753		746		731	C–Si str.	
19	714	703		762		769	Si–H def.	
20	687	686		668		690	C–Cl str.	
21	607	636	595	613	595	624	C-Si str., C-Cl str.	
22	498	498	502	519	502	502	Si-D def.	
23	425	425	433	430	433	425	SiHD rock.	
24		211		248		251	Skeletal bend.	
25		168		176		176	CH ₃ -Si torsion	
26		156		146		147	Skeletal bend.	
27		66		66		66	CH ₂ -Si torsion	

a) The chlorine atom occupies the trans position to the deuterium of the SiHD group.

b) The chlorine atom occupies the trans position to the hydrogen of the SiHD group.

c) Only the predominant symmetry coordinates are shown.

d) These four frequencies have the complicated mixing modes of the four symmetry coordinates of the CH₂ rocking, C-Si stretching, Si-H deformation, and C-Cl stretching. However, the correspondence of the observed frequencies to these symmetry coordinates can be found as is shown in the table from the comparison with those for the other species.

distribution.

A fair agreement is obtained between the observed and calculated frequencies. The deviation is within 3% for almost all of the modes. However, a little larger deviations ($\sim 5\%$) are seen for the C–Si and C–Cl stretching modes for ClCH₂SiH₂CH₃ and ClCH₂SiHD-CH₃ and for the SiD₂ wagging mode for ClCH₂SiD₂-CH₃. Although these larger deviations indicate the limitation of the transferability of the force constants, further adjustments of the force constants were not attempted.

From the calculated potential energy distribution, the mixings of the modes were found to be complicated among the C-Si and C-Cl stretchings and some of the hydrogen deformation modes of the CH₃, CH₂, and SiH₂ groups.

As is shown in Tables 1 and 2, according to the present assignments the frequency differences between the CH₃ rocking modes belonging to the A' and A'' species are found to be more than 100 cm⁻¹ for ClCH₂-SiH₂CH₃ in both the *trans* and *gauche* forms, while those for ClCH₂SiD₂CH₃ are less than 10 cm⁻¹. The situation is the same with the CH₃ rocking modes for dimethylsilane²⁾ and ethylmethylsilane,³⁾ as has been reported in previous papers.

This is understandable for the following reasons. For ClCH₂SiH₂CH₃, as the SiH₂ wagging mode is found at a frequency close to the expected frequency for the

CH₃ rocking mode belonging to the A' species, the CH₃ rocking mode receives a strong coupling from the SiH₂ wagging mode and is pushed down to the lower-frequency side. On the other hand, for ClCH₂SiD₂-CH₃, as the SiD₂ wagging mode is far from the frequency for the CH₃ rocking mode, the coupling becomes negligible.

This is also supported by the calculated potential energy distribution for these modes.

As has been already pointed out in the cases of dichlorosilane,⁷⁾ dimethylsilane,²⁾ and ethylmethylsilane,³⁾ for ClCH₂SiHDCH₃ the calculated potential energy distribution also shows that the SiHD rocking mode keeps its original mode, while the SiHD twisting mode should be more properly called the SiD deformation mode.

The vibrational assignments for the other modes can be obtained by taking into account the results of the normal vibration calculations and by comparing the observed spectra with those of similar molecules, such as dimethylsilane,⁸⁻¹⁰⁾ chloromethylsilane,¹⁾ and ethylmethylsilane.³⁾ The results are shown in Tables 1—3.

⁷⁾ to be published.

⁸⁾ E. A. V. Ebsworth, M. Onyszchuk, and N. Sheppard, *J. Chem. Soc.*, **4**, 1453 (1958).

⁹⁾ D. F. Ball, P. L. Goggin, D. C. McKean, and L. A. Woodward, Spectrochim. Acta, 16, 1358 (1960).

¹⁰⁾ I. F. Kovalev, Opt. Spectrosk., 8, 166 (1960).